
4/9/2021

1

ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Hooke-Jeeves method for
finding extrema in n dimensions

Introduction

• In this topic, we will

– Describe the idea of exploring surrounding points

– Use this exploration to indicate a direction to move

– Describe the Hooke-Jeeves method

– Discuss using this exploratory move/pattern move
approach for solving problems in general

– Look at an implemention

– Look at an example

Hooke-Jeeves method

2

1

2

4/9/2021

2

Definitions

• Recall that in Rn, the canonical basis is represented by the
vectors e1, …, en

– For ek, all entries are zero except for the kth entry which is one

– For example, in R4, the canonical basis is

Hooke-Jeeves method

3

1 2 3 4

1 0 0 0

0 1 0 0
, , ,

0 0 1 0

0 0 0 1

       
       
       = = = =
       
       
       

e e e e

The Hooke-Jeeves method

• Given a real-valued function of an n-dimensional vector variable,
we will start with an initial guess u0 and an initial step size h

– The idea is we will make a local search to find a direction of
greatest decrease, and then continue in that direction as far as
possible

Hooke-Jeeves method

4

3

4

4/9/2021

3

The Hooke-Jeeves method

• The algorithm is as follows:

– Given an approximation uk and a current step size h

• Let Duk ← 0

• For j going from 1 to n,

– Evaluate f–1 ← f (uk + Duk – hej)

f0 ← f (uk + Duk)

f1 ← f (uk + Duk + hej)

– If f–1 < f0, f1, set Duk ← Duk – hej

– If f1 < f0, f–1, set Duk ← Duk + hej

• If Duk = 0, if h is sufficient small, we are finished,
otherwise, reduce h and return to the first step

• Otherwise, evaluate f (uk + mDuk) for successively larger
integer values of m until f (uk + mDuk) < f (uk + (m + 1)Duk)

– Set uk+1 ← uk + mDuk and return to the first step

Hooke-Jeeves method

5

The Hooke-Jeeves method

• To summarize the strategy:

– Explore the points around uk and find the Duk that offers the
best move towards the minimum

– These are called exploratory moves

• If no better point was found,
either we are finished,

or we try again in a smaller neighborhood

• If a better point is found, continue moving in the direction
indicated by this Duk until we find a minimum in that direction

– These are called pattern moves

Hooke-Jeeves method

6

5

6

4/9/2021

4

Problem-solving techniques

• This problem-solving strategy can be used for other searches:

– In a process of exploration, determine a local improvement

• If an improvement is found,
use this pattern to move towards a better solution

• If no improvement is found,

– Either declare the current approximation to be acceptable,

– Or try again with different searching criteria

Hooke-Jeeves method

7

Implementation

std::pair<vector, double>

hooke_jeeves(double f(vector u), vector u,
double h,
double eps_step, double eps_abs,
unsigned int max_iterations) {

unsigned int dim{ u.dim() };

double min{ f(u) };

for (unsigned int k{0}; k < max_iterations; ++k) {

// Exploratory moves

// Check conditions

// Pattern moves

}

return std::make_pair(vector{ dim, 0.0 }, NAN);

}

Hooke-Jeeves method

8

7

8

4/9/2021

5

Implementation
// Exploratory moves

vector u0{ u };

double min0{ min };

vector du{ vector{ dim, 0.0 } }; // The n-dimensional zero vector

for (unsigned int j{0}; j < dim; ++j) {

du(j) = -h;

double fn{ f(u + du) };

du(j) = h;

double fp{ f(u + du) };

if ((fp < fn) && (fp < min)) {

min = fp;

} else if (fn < min) {

du(j) = -h;

min = fn;

} else {

du(j) = 0.0;

}

}

u += du;

Hooke-Jeeves method

9

Implementation

// Check conditions

if (norm(du) == 0.0) {

if (h < eps_step) {

return std::make_pair(u, min);

} else {

h /= 2.0;

continue;

}

}

Hooke-Jeeves method

10

9

10

4/9/2021

6

Implementation
// Pattern moves

// - We stored the initial values in u0 and min0

while (k < max_iterations) {

double fm{ f(u + du) };

++k;

if (fm < min) {

u += du;

min = fm;

} else {

break;

}

}

if ((k < max_iterations) && (norm(u - u0) < eps_step)

&& ((min0 - min) < eps_abs)) {

return std::make_pair(u, min);

}

Hooke-Jeeves method

11

Example

• The example on the Wikipedia page is most appropriate

– Created by Guillaume Jacquenot

Hooke-Jeeves method

12

11

12

4/9/2021

7

Summary

• Following this topic, you now

– Understand the Hooke-Jeeves method for finding a minimum

– Are aware of this exploratory/pattern approach to solving
problems

– Have seen an implementation

– Have seen an example

Hooke-Jeeves method

13

References

[1] https://en.wikipedia.org/wiki/Pattern_search_(optimization)

Hooke-Jeeves method

14

13

14

4/9/2021

8

Acknowledgments

None so far.

Hooke-Jeeves method

15

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Hooke-Jeeves method

16

15

16

4/9/2021

9

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Hooke-Jeeves method

17

17

